Котлы с естественной циркуляцией

Естественная циркуляция в системе отопления

В небольших частных домах и квартирах ценится обогрев, независимый от электричества. Для маленьких городов и сел типична ситуация, когда по разным причинам подстанция выходит из строя, повреждена проводка и прочее. Система отопления с естественной циркуляцией не включает ни одного модуля, который работал бы от электросети.

Особенности системы отопления с естественной циркуляцией

Любая отопительная схема включает несколько обязательных элементов:

  • Котел, нагревающий воду – газовый, дровяной, торфяной. Обязательное условие – пьезорозжиг, иначе запустить аппарат без электричества будет невозможно.
  • Подающий трубопровод поставляет нагретую воду радиаторам. Размещают трубы с некоторым уклоном – 0,5–1 см на 1 м, чтобы вода могла двигаться самотеком. «Горячие» водоводы размещают с уклоном по направлению к радиаторам.
  • Обогревательные приборы – батареи любого типа. Через них происходит основная передача тепла.
  • Обратный трубопровод – по нем остывший теплоноситель возвращается в котел. «Холодные» трубы монтируют с уклоном в 0,5–1 см на 1 м по направлению к котлу.
  • Расширительный бачок – размещается в самой верхней точке системы. Когда вода нагревается, она увеличивается в объеме. Бачок компенсирует этот избыток.

Функционирует система так: вода нагревается в котле, расширяется, плотность ее уменьшается, и жидкость поднимается по центральному стояку. Расширительный бачок заполняется, чтобы выровнять давление между холодной и горячей водой. Затем сверху вода спускается по подающему трубопроводу к каждой батарее, где охлаждается, отдавая тепло воздуху и поверхностям. Остывшая жидкость по обратным трубам перемещается к котлу. Поскольку плотность остывшей воды ниже, вернувшись в котел, она выдавливает менее плотную нагретую жидкость, заставляя ее подниматься.

Помимо функции компенсации давления, расширительный бачок выполняет и другую роль. Вместе с водой в трубы попадает воздух. При его накоплении возникает воздушная пробка, которая не позволяет теплоносителю перемещаться по трубам. Однако в конвективных системах пузырьки воздуха из-за расположения трубопровода под уклоном поднимаются в расширительный бачок. Так как это устройство открытое и контактирует с воздухом, пузырьки покидают систему.

Конструкция проста, но требует очень точных расчетов. Вода, двигаясь по трубе, создает трение, замедляется и отдает тепло быстрее. При изменении направления – повороты, ответвления, каналы в батареях – трение усиливается. Если не учесть водяное сопротивление в расчетах, система работать не будет.

Конвективное отопление отлично действует на небольших площадях. Таким образом можно обгореть одно- или двухэтажный частный дом или квартиру. Для 9-этажного здания такой вариант не годится.

Преимущества и недостатки системы

Естественная циркуляция обеспечивает систему отопления следующими преимуществами:

  • Главное достоинство – независимость от электричества. Конвективное отопление работает в любых условиях.
  • При грамотном монтаже и уходе самотечный вариант функционирует дольше 30 лет.
  • Монтаж очень прост, профилактический осмотр и ремонт тоже не вызывают затруднений.
  • Высокая тепловая инерция – здесь циркулирует большой объем воды. Она медленнее остывает и дольше отдает тепло.

Встроить в циркуляционную схему насос не составляет труда. Сделать это можно во время монтажа или позднее. Когда есть электричество, отопление работает в режиме принудительной циркуляции, а при его отсутствии автоматически переходит в режим естественного перемещения воды.

У самотечного варианта есть существенные недостатки, что заметно ограничивает применение:

  • Обслуживает система лишь небольшие одноэтажные или двухэтажные коттеджи.
  • Чтобы снизить гидравлическое сопротивление, используют трубы с максимально большим допустимым диаметром. Это затрудняет монтаж, также стоимость водоводов с большим диаметром больше.
  • Рекомендуется использовать только стальные трубы. Допускается применять полипропиленовые. Остальные неметаллические модели запрещены.
  • Регулировать температуру в каждом помещении вручную или автоматически невозможно.
  • В схему нельзя включать бойлеры косвенного нагрева, что увеличивает расходы на получение горячей воды.
  • Невозможно обустроить теплый пол.

На работу конвективного отопления значительно влияют сужения. Нельзя использовать металлопластиковые трубы, поскольку они соединяются фитингами, диаметр которых меньше.

Виды систем отопления

Обогревательная схема может включать 1 или несколько контуров разной длины, с разными радиаторами. Однако любой вариант, является модификацией только двух моделей – однотрубной или двухтрубной.

Однотрубные

Устройство максимально простое. Одна и та же труба по очереди подводит теплоноситель к каждому радиатору и возвращается в котел. Самый дешевый вариант и самый беспроблемный – обогрев только трубами, без радиаторов. Если же батареи включены в схему, труб и запорной арматуры должно быть минимум.

Вода, последовательно двигаясь к последнему радиатору, все больше остывает. Эту особенность учитывают при расчете числа секций.

Различают 2 схемы однотрубного варианта:

  • С верхним подключением – вода попадает в батарею сверху через верхний патрубок, выходит через нижний. КПД системы максимально для водяного отопления.
  • С нижним подключением – теплоноситель поступает в радиатор снизу и выходит тоже через нижний патрубок. Путь прохождения воды увеличивается, поэтому теплоотдача системы заметно ниже. Здесь нельзя ставить радиаторы с большим числом секций. Однако несмотря на меньшую эффективность, такую схему предпочитает монтировать в квартирах, так как она более эстетична.

Классический вариант можно модернизировать, установив байпас – ответвления с трехходовым краном и ответвлениями с кранами. С их помощью можно регулировать подачу воды к разному радиатору и отключать при надобности.

Двухтрубные системы

Вариант с обратной трубой носит название двухтрубный. Горячая вода подается к радиатору под одной трубе, а остывшая, от каждого обогревательного прибора отводится по обратной трубе. Система куда эффективнее: каждый радиатор получает практически одинаковое количество тепла. Степень нагрева можно регулировать на каждой батарее, при необходимости исключить ее из обогревательного контура. Большой плюс – более простой расчет параметров трубопровода и батарей.

Выполняют как верхнее, так и нижнее подключение:

  • В первом случае трубы расположены выше радиаторов.
  • Во втором подающая труба размещается ниже батареи. Такой вариант эстетичнее, однако перепад давления получается слишком низкий, поэтому используется схема очень редко.

При расчетах учитывают направление отвода воды. Если оно совпадает с направлением горячей жидкости, попутная схема, длина циклов равная. При этом радиаторы нагреваются одинаково. Если используется тупиковая, холодная и горячая вода двигаются в разных направлениях, быстрее нагреваются те батареи, у которых цикл круговорота оказывается меньше.

Как появляется циркуляционный напор

Перемещение воды в конвективном отоплении обеспечивает только разница в плотности горячей и холодной воды. При нагреве плотность теплоносителя снижается и он поднимается; при охлаждении – увеличивается, и он вытесняет более теплую жидкость. Чем больше разница в гидростатическом давлении столба холодной и горячей воды, тем выше циркуляционный напор, тем лучше работает отопление.

Основная задача при организации системы – добиться максимального перепада давления.

  • Обязательный элемент схемы – коллектор разгона или главный стояк. Это вертикальная труба, которая поднимается от теплообменника до верхней точки системы. Здесь монтируют расширительный бак – открытый или закрытый мембранный с воздушным клапаном для отвода воздуха.
  • Главный стояк должен иметь максимальную температуру, поэтому коллектор утепляют. Высота его не более 10 м. В идеале стояк не соприкасается с обратными трубами.
  • Чтобы создать достаточный перепад давления, нужно создать большой столб холодной жидкости. Добиваются этого, устанавливая котел в самой нижней точке системы. В частном доме аппарат размещают в подвале, в квартире – в углублении. Чем выше уровень батарей над уровнем котла, тем большее давление образует холодная вода и тем активнее вытесняет горячую.

Чтобы улучшить циркуляционный напор, подбирают батареи с максимально большой рабочей поверхностью. Чем лучше теплоноситель отдает тепло и чем более холодная вода поступает в котел, тем лучше работает отопление.

Принцип построения отопительной системы с естественной циркуляцией

Главные параметры обогрева с естественной циркуляцией – циркуляционный напор и гидростатическое сопротивление. Первый показатель рассчитывают так:

  • P – давление в системе;
  • h – разница высот между центром самой нижней батареи и центром котла;
  • p0 – плотность нагретой жидкости;
  • p1– плотность холодной воды.

Чем больше разница в высоте, тем выше перепад давления. Однако показатель имеет ограничение – не более 3 м.

Рассчитать значение второго фактора – гидравлического сопротивления – практически невозможно. Описывающая его модель крайне сложна и включает множество переменных. Здесь ограничиваются приблизительными вычислениями.

Чтобы улучшить КПД системы, соблюдают рекомендации:

  • Подбирают трубы с максимально большим диаметром. При этом несколько уменьшается скорость потока, но сопротивление падает сильнее.
  • Устанавливают как можно меньше запорной арматуры. Следят за тем, чтобы схема включала минимум поворотов и сужений.
  • При нижнем подключении радиаторы обязательно снабжают кранами Маевского, чтобы стравливать лишний воздух.
  • Для коллектора используют металлическую трубу, так как важно добиться максимального нагрева для создания перепада давления. Трубы, обслуживающие батареи, могут быть из полипропилена.

Грамотная теплоизоляция улучшает работу отопления. Изолируют коллектор разгона, подводящие и обратные трубы, если они проходят через неотапливаемые помещения.

Самотечная система отопления с естественной циркуляцией – расчеты, уклоны, виды

Система с гравитационной циркуляцией чувствительна к ошибкам, допущенным во время монтажа отопления.

Принцип работы системы с естественной циркуляцией

  • Простой монтаж и обслуживание.
  • Отсутствие необходимости в установке дополнительного оборудования.
  • Энергонезависимость – во время работы не требуются дополнительные расходы на электроэнергию. При отключении электричества, система обогрева продолжает работать.

Принцип работы водяного отопления, с использованием самотечной циркуляции, основан на физических законах. При нагревании уменьшается плотность и вес жидкости, а при остывании жидкостной среды, параметры возвращаются в первоначальное состояние.

При этом, давление в системе отопления практически отсутствует. В теплотехнических формулах принимается соотношение 1 атм., на каждые 10 м. напора водяного столба. Расчет системы отопления 2-х этажного дома покажет, что гидростатическое давление не превышает 1 атм., в одноэтажных зданиях 0,5-0,7 атм.

Так как при нагреве жидкость увеличивается в объеме, для естественной циркуляции, обязательно потребуется расширительный бак. Вода, проходящая через водяной контур котла, нагревается, что приводит к увеличению в объеме. Расширительный бачек должен находиться на подаче теплоносителя, в самом верху системы отопления. Задачей буферной емкости является компенсация увеличения объема жидкости.

Система отопления с самоциркуляцией может применяться в частных домах, делая возможным следующие подключения:

  • Подсоединение к теплым полам – требует установить циркуляционный насос, только на водяной контур, уложенный в пол. Остальная система продолжит работать с естественной циркуляцией. После отключения электричества, помещение продолжит отапливаться с помощью установленных радиаторов.
  • Работа с бойлером косвенного нагрева воды – подключение к системе с естественной циркуляцией возможно, без необходимости в подключении насосного оборудования. Для этого бойлер устанавливают в верхней точке системы, чуть ниже воздушного расширительного бака закрытого или открытого типа. Если это невозможно, тогда насос устанавливают непосредственно на накопительную емкость, дополнительно устанавливая обратный клапан, чтобы избежать рециркуляции теплоносителя.

Виды систем отопления с гравитационной циркуляцией

Несмотря на простое устройство системы водяного отопления с самоциркуляцией теплоносителя, существует как минимум четыре, пользующихся популярностью, схемы монтажа. Выбор типа разводки зависит от характеристик самого здания и ожидаемой производительности.

Чтобы определить, какая схема будет работоспособной, в каждом отдельном случае требуется выполнить гидравлический расчет системы, учесть характеристики отопительного агрегата, рассчитать диаметр трубы и т.п. При выполнении вычислений может потребоваться помощь профессионала.

Закрытая система с самотечной циркуляцией

В остальном, системы закрытого типа, работают, как и остальные схемы отопления с естественной циркуляцией. В качестве минусов можно выделить зависимость от объема расширительного бака. Для помещений с большой отапливаемой площадью, потребуется установить вместительную емкость, что не всегда целесообразно.

Открытая система с самотечной циркуляцией

Система отопления открытого типа отличается от предыдущего типа только конструкцией расширительного бака. Данная схема чаще всего использовалась в старых зданиях. Преимуществами открытой системы является возможность самостоятельного изготовления емкости из подручных материалов. Бачок, обычно имеет скромные габариты и устанавливается на кровле или под потолком жилой комнаты.

Главным недостатком открытых конструкций является попадание воздуха в трубы и радиаторы отопления, что приводит к усилению коррозии и быстрому выходу из строя греющих элементов. Завоздушивание системы также частый «гость» в схемах открытого типа. Поэтому, радиаторы устанавливаются под углом, обязательно предусматриваются краны Маевского, для стравливания воздуха.

Однотрубная система с самоциркуляцией

Однотрубная горизонтальная система с естественной циркуляцией имеет низкую теплоэффективность, поэтому используется крайне редко. Суть схемы такова, что подающая труба последовательно подключена к радиаторам.

Нагретый теплоноситель поступает в верхний патрубок батареи и выводится через нижний отвод. После этого тепло поступает к следующему узлу отопления и так до последней точки. От крайней батареи к котлу возвращается обратка.

Преимуществ у данного решения несколько:

  1. Отсутствует парный трубопровод под потолком и над уровнем пола.
  2. Экономятся средства на монтаж системы.

Недостатки такого решения очевидны. Теплоотдача радиаторов отопления и интенсивность их нагрева снижается по мере отдаленности от котла. Как показывает практика, однотрубная система отопления двухэтажного дома с естественной циркуляцией, даже при соблюдении всех уклонов и подбора правильного диаметра труб, зачастую переделывается (посредством монтажа насосного оборудования).

Двухтрубная система с самоциркуляцией

Как правильно сделать водяное отопление с естественной циркуляцией

Какой уклон труб нужен при самотечной циркуляции

Нормы проектирования внутридомовой системы отопления с гравитационной циркуляцией, подробно прописаны в строительных нормах. В требованиях учитывается, что движению жидкости внутри водяного контура будет мешать гидравлическое сопротивление, препятствия в виде углов и поворотов, и т.д.

Уклон отопительных труб регламентируется в СНиП. Согласно указанным в документе нормам, на каждый погонный метр требуется сделать наклон в 10 мм. Соблюдение данного условия гарантирует беспрепятственное движение жидкости в водяном контуре.

Нарушение наклона при прокладке труб, приводит к завоздушиванию системы, недостаточному прогреву отдаленных от котла радиаторов, и, как следствие, снижению теплоэффективности.

Какие трубы применяют для монтажа

Выбор труб для изготовления отопительного контура имеет важное значение. Каждый материал имеет свои теплотехнические характеристики, гидравлическую сопротивляемость и т.д. При самостоятельном выполнении монтажных работ, дополнительно учитывают сложность монтажа.

Чаще всего используют следующие строительные материалы:

  • Стальные трубы – к достоинствам материала следует отнести: доступную стоимость, устойчивость к высокому давлению, теплопроводность и прочность. Недостатком стали является сложный монтаж, невозможный, без применения сварочного оборудования.
  • Металлопластиковые трубы – имеют гладкую внутреннюю поверхность, не дающую контуру засориться, небольшой вес и линейное расширение, отсутствие коррозии. Популярность металлопластиковых труб несколько ограничивает небольшой срок эксплуатации (15 лет) и высокая стоимость материала.
  • Полипропиленовые трубы – получили широкое применение благодаря простоте монтажа, высокой герметичности и прочности, длительному сроку эксплуатации и устойчивости к размерзанию. Трубы из полипропилена монтируются с помощью паяльника. Срок службы не менее 25 лет.
  • Медные трубы – не получили широкого распространения за счет большой стоимости. Медь имеет максимальную теплоотдачу. Выдерживает нагрев до + 500°С, срок эксплуатации свыше 100 лет. Особенной похвалы достоин внешний вид трубы. Под воздействием температуры, поверхность меди покрывается патиной, что только улучшает внешние характеристики материала.

Какого диаметра должны быть трубы при циркуляции без насоса

Правильный расчет диаметров труб на водяное отопление с естественной циркуляцией осуществляется в несколько этапов:

  • Подсчитывается потребность помещения в тепловой энергии. К полученному результату добавляют около 20%.
  • СНиП указывает соотношение тепловой мощности к внутреннему сечению трубы. Высчитываем по приведенным формулам сечение трубопровода. Чтобы не выполнять сложные вычисления, стоит воспользоваться он-лайн калькулятором.
  • Диаметр труб системы с естественной циркуляцией должен быть подобран согласно теплотехническим расчетам. Чрезмерно широкий трубопровод приводит к снижению теплоотдачи и увеличению расходов на отопление. На ширину сечения влияет тип используемого материала. Так, стальные трубы не должны быть уже 50 мм. в диаметре.

Существует еще одно правило, помогающее усилить циркуляцию. После каждого разветвления трубы, диаметр сужают на один размер. На практике это значит следующее. К котлу подключена двухдюймовая труба. После первого разветвления контур сужают до 1 ¾, дальше до 1 ½ и т.д. Обратку наоборот собирают с расширением.

Какой розлив лучше сделать – нижний или верхний

    Система с нижним розливом – имеет привлекательный внешний вид. Трубы располагаются на уровне пола. Однотрубная система с нижней разводкой имеет малую теплоэффективность и требует тщательного планирования и проведения расчетов. Схемы с нижним розливом наиболее востребованы для трубопроводов высокого давления.

Система с верхним розливом – данное решение оптимально подходит для частного дома. Подача горячей воды осуществляется посредством трубы, расположенной под потолком. Поступающий сверху теплоноситель, вытесняет скопившийся воздух (воздух стравливается через краны Маевского). Однотрубная система водяного отопления с верхним розливом, также отличается эффективностью.

Какой теплоноситель лучше для систем с самоциркуляцией

Оптимальный теплоноситель для системы отопления с естественным движением жидкости – это вода. Дело в том, что антифриз имеет большую плотность и меньшую теплоотдачу. Для нагрева гликолевых составов до необходимого состояния, требуется больше времени, сжигаемого топлива, при этом теплоотдача остается на уровне воды.

За использование незамерзающей жидкости, в качестве довода можно привести два довода:

  1. Высокая текучесть материала, улучшающая циркуляцию.
  2. Способность сохранять текучесть при достижении -10°С, -15°С.

Антифриз используют, если планируется в течение долгого времени не отапливать помещение, или делать это с периодичностью, а постоянно сливать жидкость из системы нет возможности.

Какое отопление лучше выбрать – естественное или принудительное?

Конструктивные особенности системы с естественной гравитационной циркуляцией, простота монтажа и возможность самостоятельного выполнения работ, сделали такую схему достаточно популярной у отечественного потребителя.

Но самоциркулирующая конструкция проигрывает по сравнению с контуром, подключенным к насосному оборудованию, в следующих аспектах:

  • Начало работы – система отопления с естественной циркуляцией начинает работать при температуре теплоносителя около 50°С. Это необходимо, чтобы вода расширилась в объеме. При подключении к насосу, жидкость двигается по водяному контуру сразу после включения.
  • Падение мощности отопительных приборов при естественной циркуляции теплоносителя по мере отдаленности от котла. Даже при грамотно собранной схеме, разница температуры составляет порядка 5°С.
  • Влияние воздуха – основной причиной отсутствия циркуляции является завоздушивание части водяного контура. Воздух в системе отопления может образовываться из-за несоблюдения уклонов, использования открытого расширительного бачка и других причин. Чтобы продавить систему, приходится включать котел на максимальную мощность, что приводит к существенным затратам.
  • Отопление двухэтажного дома при естественной циркуляции теплоносителя затруднено по причине существующих препятствий для движения жидкости.
  • Относительно регуляции нагрева, самоциркулирующие системы также уступают контурам, подключенным к насосам. Современное циркуляционное оборудование подключается к комнатным термостатам, что обеспечивает точность теплоотдачи и нагрев температуры в помещении с погрешностью до 1°С. Установка терморегуляторов допускается и в схемах с самоциркуляцией, но погрешность настроек составит 3-5°С.

Выбрать систему с естественной циркуляцией, оправдано, в случае отопления небольших одноэтажных зданий. Если требуется отапливать коттеджи и загородные дома площадью более 150-200 м², нужна установка циркуляционного оборудования.

Главным достоинством схем с самоциркуляцией является их энергонезависимость, но произведя несложные расчеты, можно прийти к выводу, что экономия на электроэнергии не оправдывает потери тепла в процессе самостоятельного движения теплоносителя. Схемы с принудительной циркуляцией имеют большую теплоотдачу и эффективность.

Система отопления с естественной циркуляцией: распространенные схемы водяных контуров

Сооружение автономной сети отопления гравитационного типа выбирают, если нецелесообразно, а иногда и невозможно установить циркуляционный насос или подключиться к централизованному электроснабжению.

Такая система обходится дешевле в обустройстве и полностью независима от электричества. Однако ее работоспособность во многом зависит от точности проектирования.

Чтобы система отопления с естественной циркуляцией функционировала бесперебойно, необходимо рассчитать ее параметры, правильно установить компоненты и обоснованно выбрать схему водяного контура. Мы поможем в решении этих вопросов.

Мы описали главные принципы работы гравитационной системы, привели советы по выбору трубопровода, обозначили правила сборки контура и размещения рабочих узлов. Отдельное внимание мы уделили особенностям проектирования и функционирования одно- и двухтрубной схемам отопления.

Принципы процесса естественной циркуляции

Процесс движения воды в контуре отопления без применения циркуляционного насоса происходит в силу естественных физических законов.

Понимание природы этих процессов позволит грамотно разработать проект системы отопления для типовых и нестандартных случаев.

Максимальная разность гидростатического давления

Основное физическое свойство любого теплоносителя (воды или антифриза), которое способствует его движению по контуру при естественной циркуляции – уменьшение плотности при увеличении температуры.

Плотность горячей воды меньше, чем холодной и поэтому возникает разница в гидростатическом давлении теплого и холодного столба жидкости. Холодная вода, стекая к теплообменнику, вытесняет горячую вверх по трубе.

Отопительный контур дома можно условно разделить на несколько фрагментов. По “горячим” фрагментам вода направляется вверх, а по “холодным” – вниз. Границами фрагментов являются верхняя и нижняя точка системы отопления.

Главной задачей при моделировании системы с естественной циркуляциейводы является достижение максимально возможной разницы между давлением столба жидкости в “горячем” и “холодном” фрагментах.

Классическим для естественной циркуляции элементом водяного контура является коллектор разгона (главный стояк) – вертикальная труба, направленная вверх от теплообменника.

Коллектор разгона должен иметь максимальную температуру, поэтому его утепляют на всей протяженности. Хотя, если высота коллектора не велика (как для одноэтажных домов), то можно не проводить утепление, так как вода в нем не успеет остыть.

Обычно систему проектируют таким образом, чтобы верхняя точка коллектора разгона совпадала с верхней точкой всего контура. Там устанавливают выход на бак-расширитель открытого типа или клапан для отвода воздуха, если используют мембранный бак.

Тогда длина “горячего” фрагмента контура является минимально возможной, что приводит к уменьшению теплопотерь на этом участке.

Также желательно, чтобы “горячий” фрагмент контура не сочетался с длительным участком, транспортирующим остывший теплоноситель. В идеале нижняя точка водяного контура совпадает с нижней точкой теплообменника, помещенного в устройство нагрева.

Для “холодного” сегмента водяного контура тоже есть свои правила, увеличивающие давление жидкости:

  • чем больше теплопотери на “холодном” участке отопительной сети, тем ниже температура воды и больше ее плотность, поэтому функционирование систем с естественной циркуляцией возможно только при значительной теплоотдаче;
  • чем больше расстояние от нижней точки контура к подключению радиаторов, тем больше участок столба воды с минимальной температурой и максимальной плотностью.

Чтобы обеспечить выполнение последнего правила, часто печь или котел устанавливают в самой нижней точке дома, например, в подвале. Таким размещением котла обеспечивают максимально возможное расстояние между нижним уровнем радиаторов и точкой входа воды в теплообменник.

Однако высота между нижней и верхней точками водяного контура при естественной циркуляции не должна быть слишком большой (на практике не более 10 метров). Печь или котел, нагревают только теплообменник и нижнюю часть коллектора разгона.

Если этот фрагмент незначителен относительно всей высоты водяного контура, то падение давления в “горячем” фрагменте контура будет несущественным и процесс циркуляции не будет запущен.

Минимизация сопротивления движению воды

При проектировании системы с естественной циркуляцией необходимо учитывать скорость движения теплоносителя по контуру.

Во-первых, чем быстрее скорость, тем быстрее будет происходить передача тепла по системе “котел – теплообменник – водяной контур – радиаторы отопления – помещение”.

Во-вторых, чем быстрее скорость жидкости через теплообменник, тем меньше вероятность ее закипания, что особенно важно при печном отоплении.

В системах отопления с принудительной циркуляцией скорость движения воды в основном зависит от параметров циркуляционного насоса.

При водяном отоплении с естественной циркуляцией скорость зависит от следующих факторов:

  • разницы давления между фрагментами контура в нижней его точке;
  • гидродинамического сопротивления отопительной системы.

Способы обеспечения максимальной разницы давления были рассмотрены выше. Гидродинамическое сопротивление реальной системы не поддается точному расчету по причине сложной математической модели и большого числа входящих данных, точность которых трудно гарантировать.

Тем не менее, существуют общие правила, соблюдение которых позволит уменьшить сопротивление отопительного контура.

Основным причинами снижения скорости движения воды являются сопротивление стенок труб и присутствие сужений из-за наличия фитингов или запорной арматуры. При небольшой скорости потока сопротивление стенок практически отсутствует.

Исключение составляют длинные и тонкие трубы, характерные для отопления с помощью теплого пола. Как правило, для него выделяют отдельные контуры с принудительной циркуляцией.

При выборе типов труб для контура с естественной циркуляцией придется учитывать наличие технических сужений при монтаже системы. Поэтому металлопластиковые трубы использовать при естественной циркуляции воды нежелательно по причине соединения их фитингами, со значительно меньшим внутренним диаметром.

Правила выбора и монтажа труб

Выбор между стальными или полипропиленовыми трубами при любой циркуляции происходит по критерию возможности их использования для горячей воды, а также с позиций цены, легкости монтажа и срока эксплуатации.

Стояк подачи монтируют из металлической трубы, так как через него проходит вода самой высокой температуры, а в случае печного отопления или неисправности теплообменника возможен вариант прохождения пара.

При естественной циркуляции необходимо использовать диаметр труб несколько больший, чем в случае применения циркуляционного насоса. Обычно, для обогрева помещений до 200 кв. м, диаметр коллектора разгона и трубы на входе обратки в теплообменник равен 2 дюймам.

Это вызвано меньшей скоростью воды по сравнению с вариантом принудительной циркуляции, что приводит к следующим проблемам:

  • снижение объема переносимого тепла за единицу времени от источника к обогреваемому помещению;
  • появление засоров или воздушных пробок, с которыми не сможет справиться небольшого напор.

Особенное внимание при использовании естественной циркуляции с нижней схемой подвода подачи необходимо уделить проблеме удаления воздуха из системы. Он не может полностью отводиться из теплоносителя через расширительный бак, т.к. закипающая вода поступает сперва в приборы по магистрали, расположенной ниже чем они сами.

При принудительной циркуляции напор воды сгоняет воздух к установленному в наивысшей точке системы воздухосборнику – устройству с автоматическим, ручным или полуавтоматическим управлением. С помощью кранов Маевского в основном производится регулировка теплоотдачи.

В гравитационных отопительных сетях с подачей, расположенной ниже приборов, краны Маевского применяются непосредственно для стравливания воздуха.

Воздух также может отводиться с помощью воздухоотводчиков, установленных на каждом стояке или на воздушной линии, проложенной параллельно магистралям системы. Из-за внушительного количества устройств для отвода воздуха гравитационные схемы с нижней разводкой применяются крайне редко.

При слабом напоре небольшая воздушная пробка способна полностью остановить систему обогрева. Так, согласно СНиП 41-01-2003 не допускается прокладывать без уклона трубопроводы систем отопления при скорости движения воды менее 0,25 м/с.

При естественной циркуляции такие скорости недостижимы. Поэтому кроме увеличения диаметра труб необходимо соблюдать постоянные уклоны для вывода воздуха из системы отопления. Уклон проектируют из расчета 2- 3 мм на 1 метр, в квартирных сетях наклон достигает 5 мм на погонный метр горизонтальной линии.

Уклон подачи делают по ходу движения воды, чтобы воздух двигался к баку-расширителю или системе, стравливающей воздух, расположенной в верхней точке контура. Хотя можно сделать и контр-уклон, но в этом случае необходимо дополнительно установить клапан для отвода воздуха.

Уклон магистрали обратки делают, как правило, по ходу движения охлажденной воды. Тогда нижняя точка контура будет совпадать с входом обратной трубы в теплогенератор.

При установке теплого пола небольшой площади в контуре с естественной циркуляцией необходимо не допустить попадания воздуха в узкие и горизонтально расположенные трубы этой обогревательной системы. Необходимо поставить устройство удаления воздуха перед теплым полом.

Однотрубные и двухтрубные схемы отопления

При разработке схемы отопления дома с естественной циркуляцией воды возможно проектирование как одного, так и нескольких отдельных контуров. Они могут существенно отличаться друг от друга. Вне зависимости от длины, количества радиаторов и других параметров, их выполняют по однотрубной или двухтрубной схеме.

Контур с использованием одной магистрали

Систему отопления с использованием одной и той же трубы для последовательного подвода воды к радиаторам называют однотрубной. Самым простым однотрубным вариантом является отопление металлическими трубами без использования радиаторов.

Это наиболее дешевый и наименее проблемный способ решения обогрева дома при выборе в пользу естественной циркуляции теплоносителя. Единственный значимый минус – внешний вид громоздких труб.

При самом экономном варианте однотрубной схемы с радиаторами отопления, горячая вода последовательно протекает через каждое устройство. Здесь необходимо минимальное количество труб и запорной арматуры.

По мере прохождения теплоноситель остывает, поэтому последующие радиаторы получают воду более холодную, что необходимо учитывать при расчете количества секций.

Самым эффективным способом подключения приборов отопления к однотрубной сети считается диагональный вариант.

Согласно этой схеме контуров отопления с естественным типом циркуляции горячая вода поступает в радиатор сверху, после охлаждения отводится через расположенный внизу патрубок. При прохождении подобным образом нагретая вода отдает максимальное количество тепла.

При нижнем подключении к батарее как входного патрубка, так и выходного, теплоотдача существенно уменьшается, потому что нагретому теплоносителю надо пройти максимально длинный путь. Из-за значительного остывания в подобных схемах не используются батареи с большим количеством секций.

Отопительные контуры с подобным подключением радиаторов получили название “Ленинградка“. Несмотря на отмеченные потери тепла, им отдают предпочтение в обустройстве систем квартирного отопления, что обусловлено более эстетичным видом прокладки трубопровода.

Существенным недостатком однотрубных сетей является невозможность отключить одну из секций отопления без прекращения циркуляции воды по всему контуру.

Поэтому обычно применяют модернизацию классической схемы с установкой “байпаса” для обхода радиатора с помощью ответвления с двумя шаровыми кранами или трехходовым краном. Это позволяет регулировать подачу воды к радиатору, вплоть до полного его отключения.

Для двух и более этажных строений применяют варианты однотрубной схемы с вертикальными стояками. В этом случае распределение горячей воды более равномерное, чем при горизонтальных стояках. К тому же вертикальные стояки менее протяженные и лучше вписываются в интерьер дома.

Вариант с применением обратной трубы

Когда одну трубу используют для подачи горячей воды к радиаторам, а вторую – для отвода охлажденной к котлу или печи, такую схему отопления называют двухтрубной. Подобную систему при наличии радиаторов отопления используют чаще, чем однотрубную.

Она более дорогая, так как требует монтажа дополнительной трубы, но имеет ряд значимых преимуществ:

  • более равномерное распределение температуры подаваемого к радиаторам теплоносителя;
  • проще выполнить расчет зависимости параметров радиаторов от площади отапливаемого помещения и необходимых значениях температуры;
  • эффективней регулировка подачи тепла к каждому радиатору.

В зависимости от направления движения охлажденной воды относительно горячей, двухтрубные системы подразделяют на попутные и тупиковые. В попутных схемах движение охлажденной воды происходит в том же направлении, что и горячей, поэтому длина цикла для всего контура совпадает.

В тупиковых схемах, охлажденная вода движется навстречу горячей, поэтому для разных радиаторов длины циклов оборота теплоносителя отличаются. Так как скорость в системе небольшая, то и время нагрева может существенно отличаться. Те радиаторы, у которых длина цикла круговорота воды меньше, будут нагреты быстрее.

Существует два типа расположения подводки относительно радиаторов отопления: верхняя и нижняя. При верхней подводке труба, подающая горячую воду, располагается выше радиаторов отопления, а при нижней подводке – ниже.

При нижней подводке возможно удаление воздуха через радиаторы и отсутствует необходимость проведения труб поверху, что хорошо с позиции дизайна помещения.

Однако без коллектора разгона перепад давления будет гораздо меньше, чем при использовании верхней подводки. Поэтому нижнюю подводку при отоплении помещений по принципу естественной циркуляции практически не применяют.

Выводы и полезное видео по теме

Организация однотрубной схема на основе электрокотла для небольшого дома:

Работа двухтрубной системы для одноэтажного деревянного дома на основе твердотопливного котла длительного горения:

Использование естественной циркуляции при движении воды в отопительном контуре требует точных расчетов и технически грамотного выполнения монтажных работ. При выполнении этих условий система отопления будет качественно нагревать помещения частного дома и избавит хозяев от шума насоса и зависимости от электроэнергии.

Если возникли вопросы по теме или есть желание поделиться личным опытом по организации и эксплуатации отопительной системы гравитационного типа, пожалуйста, оставляйте комментарии к этой статье. Блок для обратной связи расположен ниже.

Паровые котлы с естественной циркуляцией

Отличительной конструктивной особенностью котла с естественной циркуляцией является наличие барабана, выполняющего роль сепаратора пара из потока пароводяной смеси. Барабан котла вместе с системой необогреваемых опускных труб, и подъемных (экранных) труб образует замкнутый циркуляционный контур, в котором при горении топлива в топке организуется движение воды и пароводяной смеси (см. рисунок 2.2).

Движение рабочей среды происходит за счет возникновения естественного напора, определяемого разностью гидростатических давлений массы воды и пароводяной смеси в опускных и подъемных трубах и называемого движущим напором естественной циркуляции (см. рисунок 2.3):

, (2.1)

где Нп – высота паро-содержащей части контура, м;

rоп, rсм – соответствующая плотность воды в опускных трубах и средняя плотность пароводяной смеси в подъемных трубах, кг/м 3 ;

g – ускорение свободного падения, м/с 2 .

1-барабан; 2-топочная камера; 3-горелка;
4 – первичная пылевоздушная смесь;
5 – топочные экраны; 6 – фестон; 7 – опускные трубы; 8 – коллектор; 9,10 – I-я и II-я ступень водяного экономайзера; 11 – трубопровод;
12-паропровод; 13-конвективный паропере-греватель; 14-пароохладитель; 15- ширмовый пароперегреватель; 16 – I-я ступень воздухо-подогревателя; 18 – промежуточный паро-перегреватель; 19 – подача холодного воздуха; 20 – уходящие газы; 21- радиа-ционный пароперегреватель; 22 – отводящие трубы; 23 – пар на турбину; 24–шлаковая ванна; 25 – канал гидрошлакоудаления;
26 – горизонтальный газоход; 27 – поворотная камера; 28 – конвективная шахта; 29 – горячий воздух.

Рисунок 2.2 – Схема котла с естественной циркуляцией

Возникающий в контуре циркуляции движущий напор обеспечивает движение рабочей среды в подъемных трубах со скоростью порядка 1 м/с.

При этом за один проход через подъемные трубы происходит частичное испарение воды (0,25 кг/кг), поэтому полное испарение исходного
1 кг воды произойдет при многократном прохождении контура.

Отношение массового расхода циркулирующей воды к количеству образовавшегося пара в единицу времени – называется кратностью циркуляции:

В паровых котлах с естественной циркуляцией kц составляет от 10 до 30.

Недостатком котлов с естественной циркуляцией является – нарушение циркуляции при D/Dном .

3) Sпол=Sдв– ∆Рпод = Sдв;

4) ∆Рпод = .

|следующая лекция ==>
Основные определения и термины|Прямоточный паровой котел

Дата добавления: 2018-03-02 ; просмотров: 595 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Паровые котлы с естественной циркуляцией

М. Иванов

В паровых котлах для превращения питательной воды в пар применяются различные схемы циркуляции теплоносителя: естественная, многократная принудительная и прямоточная. Наибольшее распространение получили котлы с естественной циркуляцией.

Подписаться на статьи можно на главной странице сайта.

Технология получения пара предполагает последовательность нескольких физических процессов. Все начинается с подогрева питательной воды, которая поступает в котел при определенном давлении, создаваемом питательным насосом. Этот процесс происходит при однократном прохождении воды через трубы конвективной поверхности нагрева, называемой экономайзером (рис.1).
После экономайзера вода поступает в испарительные поверхности нагрева, которые располагают, как правило, в топочных камерах паровых котлов. Из названия этого элемента котла понятно, что здесь происходит образование пара, который затем в некоторых котлах поступает в пароперегреватель. Через обогреваемые дымовыми газами трубы пароперегревателя пар проходит однократно, а вот парообразующие поверхности нагрева могут быть разными. Чаще всего в котлах пароводяная смесь многократно проходит через обогреваемые трубки топочных экранов за счет естественной циркуляции или в результате многократно-принудительной циркуляции (с использованием особого насоса). В котлах, которые называют прямоточными, пароводяная смесь проходит через испарительные поверхности нагрева однократно, за счет давления, создаваемого питательным насосом.
Остановимся подробнее на особенностях процесса получения пара в котлах с естественной циркуляцией.
На рис. 1 приведена схема барабанного котла с естественной циркуляцией, выполненного по традиционной П-образной схеме. Питательная вода поступает в экономайзер, расположенный в конвективной шахте. Экономайзер является первой частью водопарового тракта котла: нагретая в нем вода поступает в барабан, который, в своей нижней части, соединен как с необогреваемыми опускными, так и с обогреваемыми подъемными трубами. По необогреваемым трубам котловая вода опускается к коллекторам, размещенным у нижней кромки топочной камеры. Из этих коллекторов вода поступает в вертикальные трубки топочных экранов. Именно здесь, благодаря мощному тепловому потоку от сгорания органического топлива, начинается собственно процесс парообразования. При однократном прохождении через топочные экраны испаряется не вся вода: в барабан возвращается пароводяная смесь. В объеме барабана происходит сепарация воды и пара. Пар поступает к потребителю или во входной коллектор пароперегревателя, а котловая вода вновь попадает в опускные трубы циркуляционного контура.

Рис. 1. Схема барабанного котла с естественной циркуляцией, работающего на пылевидном топливе:
1 – горелки; 2 – топочная камера; 3 – топочный экран; 4 – барабан; 5 – опускные трубы; 6 – фестон; 7 – пароперегреватель; 8 – конвективный газоход; 9 – экономайзер;10 – трубчатый воздухоподогреватель; 11 – нижние коллектора топочных экранов

Подъемно-опускное движение по контуру естественной циркуляции (т.е. по необогреваемым опускным и обогреваемым подъемным трубам) происходит вследствие разности плотностей котловой воды и пароводяной смеси.
Для повышения надежности циркуляции на барабанных котлах повышенного давления (17–18 МПа) применяют принудительное движение пароводяной смеси в топочных экранах (рис. 2, б). Как видно из приведенных схем, котел с принудительной циркуляцией отличается от котла с естественной циркуляцией (рис.2, а) наличием насоса для котловой воды. На этом же рисунке (2, в) показана схема прямоточного котла.

Рис. 2. Схема движения воды и водяного пара:
а) барабанный котел с естественной циркуляцией; б) барабанный котел с принудительной циркуляцией; в) прямоточный котел
1 – питательный насос; 2 – экономайзер; 3 – верхний барабан котла; 4 – опускные трубы; 5 – испарительные подъемные трубы; 6 – пароперегреватель; 7 – циркуляционный насос; 8 – нижний коллектор

В прямоточных котлах, которые не имеют барабана, а контур разомкнут, превращение воды в пар происходит за один проход нагревателя, и кратность циркуляции равняется единице. В барабанных котлах этот показатель выше. В котлах с принудительной циркуляцией, у которых имеются нагреватели в виде змеевиков, кратность циркуляции составляет обычно от 3 до 10. В котлах с естественной конвекцией этот параметр обычно составляет 10–50, а при малой тепловой нагрузке труб – 200–300.

Особенности и преимущества

Основным параметром, которым руководствуются при выборе марки парового котла с естественной циркуляцией (ПКЕЦ), является его паропроизводительность, измеряемая в т/ч или кг/ч. Широкий модельный ряд ПКЕЦ позволяет выбрать котлы с требуемой производительностью, начиная от нескольких килограммов до нескольких тонн пара в час. Важными показателями состояния водяного пара являются его давление и температура.
Широкий круг моделей ПКЕЦ позволяет генерировать водяной пар с избыточным давлением от десятых долей до нескольких десятков атмосфер. ПКЕЦ могут работать на различных видах органического топлива: природном газе, угле, дровах и древесных отходах, а также на жидком топливе – сырой (стабилизированной) нефти, мазуте, дизельном топливе. В ряде случаев используются особые топочные устройства, позволяющие ПКЕЦ работать на нескольких видах топлива. Кроме традиционного применения для генерации технологического пара, они широко используются в различных областях: на железнодорожном и водном транспорте, в пищевой, легкой и добывающей промышленности.
Основные достоинства ПКЕЦ – высокая надежность, простота эксплуатации, повышенная степень автоматизации и экономичности.
Создание условий надежности циркуляции в топочных экранах достигается ограничением рабочего давления котлоагрегата – обычно не выше 155 атм. Вызвано это тем, что при более высоком давлении сильно снижается разность плотностей пара и воды, в результате чего не обеспечивается эффективная циркуляция.
Современные ПКЕЦ производители комплектуют микропроцессорной системой управления и защиты. Например, система «Альфа-М» производства фирмы «Энергетик» (Москва) позволяет достичь простоты и удобства в обслуживании. Применение таких систем оптимизирует соотношение «топливо-воздух» при разных расходах топлива, что благоприятно сказывается и на эффективности производства тепловой энергии.
Котлы этого типа могут эксплуатироваться в различных климатических зонах, не требуют сложных пусконаладочных работ. Существенным преимуществом не слишком крупных современных моделей ПКЕЦ является их моноблочное исполнение. В такой конструкции предусматривается компактная установка на одной раме с агрегатом вентилятора, дымососа и питательного насоса. Сочетание высокой степени конструкторской проработки с точными системами управления и контроля позволяет достичь в ПКЕЦ высоких значений КПД, которые могут превышать 90 %.
В моноблочном исполнении котлы поставляются единым транспортабельным блоком – в собранном виде, в обмуровке и обшивке. Их монтаж относительно несложен. Компактность размещения оборудования не препятствует проведению текущего и аварийного ремонтов, а также осуществлению профилактических процедур – все узлы и детали доступны для обследования.

ПКЕЦ на российском рынке

На российском рынке паровых котлов, а также на всей территории СНГ чаще других можно встретить промышленные котлы с естественной циркуляцией, причем присутствует продукция как отечественных, так и зарубежных производителей. Котлы, произведенные в России, имеют в маркировке индекс «Е», отражающий принцип естественной циркуляции теплоносителя в этих моделях. По цене они более выигрышны в сравнении с зарубежными аналогами.
Паровые котлы серии «Е», выпускаемые ООО «ПТО» (Москва), – вертикально-водотрубные, с двумя барабанами, расположенными на одной вертикальной оси и соединенными между собой трубами диаметром 51 мм.
Котлы серии «Е» выпускаются в следующих модификациях, в зависимости от используемого топлива: Е 1,0-0,9 Г-З (Э) – для работы на природном газе, Е 1,0-0,9 М-З (Э) – для работы на мазуте, Е 1,0-0,9 Р-З (Э) – для работы на твердом топливе, Е 1,6-0,9 ГМН (Э) – для работы на газе или мазуте. Первая из групп цифр, следующая за индексом «Е», обозначает паропроизводительность (т/ч), вторая – давление пара в котле (МПа). Обозначение «Н» указывает на наличие в котле системы наддува.
Котлы серии «Е» предназначены для производства насыщенного водяного пара с рабочим давлением 8 атм. Этот пар потребляется различными предприятиями промышленности, транспорта, а также предприятиями сельского хозяйства для отопительных, технологических, хозяйственных и бытовых нужд.

Рис. 3. Паровой котел с естественной циркуляцией E-1,0 – 0,9 ГМ.

ГК «Комплексные системы» (Петербург) предлагает паровые котлы серии «КЕ» – со слоевыми механическими топками производительностью от 2,5 до 10 т/ч. Эти котлы предназначены для выработки насыщенного или перегретого водяного пара, который находит применение для технологических нужд промышленных предприятий, а также в системах отопления, вентиляции и ГВС.
Серия «КЕ» подразделяется на модификации «КЕ-С», снабженные слоевыми топочными устройствами, и модификации «КЕ-МТ», в которых имеется топка предварительного скоростного горения.
Котлы серий «ДЕ» предлагает промышленная группа «Генерация» (г. Березовский, Свердловская обл.). Они могут работать на различных видах топлива (газ, мазут) и имеют производительность от 4 до 25 т/ч. Предназначены для выработки насыщенного или слабоперегретого пара, используемого для технологических нужд предприятий, а также для отопления, вентиляции и ГВС. Серия «МЕ» отличается от предыдущей серии тем, что котлы этой серии имеют большую на 20 % поверхность нагрева и, соответственно, более высокий КПД. Котлы этой же серии предлагает и компания «Теплоуниверсал» (Петербург).
Из зарубежных производителей можно назвать итальянскую фирму Garioni Naval, поставляющую на Российский рынок промышленные модели марки GMT/HP 200–2000, паропроизводительностью от 0,3 до 3,5 т/ч. Отличительная особенность котлов этой серии – величина рабочего давления получаемого пара, которая может меняться от 5 до 110 атм. Давление водяного пара в указанном диапазоне соответствует температуре теплоносителя от 152 до 318 °С, что позволяет применять котлы этой серии в различных отраслях промышленности.
Паровые котлы высокого давления с естественной циркуляцией типа НРВ (немецкая фирма BBS GmbH) имеют паропроизводительность от 0,3 до 8 т/ч. Водотрубные котлы этой серии способны производить насыщенный пар с рабочим давлением до 120 атм. Теплоноситель с такими параметрами обычно используется в химической, нефтехимической, пищевой, а также косметической промышленностях.
Представлены также паровые котлы низкого давления зарубежного производства. Так, фирма Viessmann (Германия) производит котлы марки Vitoplex 100-LS производительностью 0,26–2,2 т/ч на жидком или газообразном топливе, с рабочим давлением в котле 7 атм.

Статья опубликована в журнале “Промышленные и отопительные котельные и мини-ТЭЦ” № 2(7)` 2011

Устройство современной системы отопления

Система отопления загородного дома, в большинстве своем, достаточно сложное инженерное сооружение. При подборе оборудования и его монтаже требуются квалифицированный инженерный расчет и качественно проведенные монтажные работы. Поэтому устройство котлов лучше производить в весенне-летний период, при приближении отопительного сезона потребность в таких работах возрастает, что может обернуться для Вас лишними затратами. При выборе отопительного оборудования необходимо руководствоваться сразу несколькими условиями. Во-первых, нужно определиться какое топливо Вы будете использовать при отоплении дома, во вторых, приблизительные потребности в затратах тепла на обогрев и горячее водоснабжение, также необходимо определить дополнительные затраты тепла, например на использование теплого пола. У нас качественное отопительное оборудование от лидирующих компаний производителей.

Устройство системы отопления начинается с отопительного котла. Все современные котлы можно разделить по двум основным параметрам – используемому топливу и настенной или напольной комплектации. Настенные котлы с естественной циркуляцией предназначены для средних и небольших по площади домов, примерно до 350-400 кв.м., и комплектуются всем необходимым, в зависимости от модели, сопутствующим оборудованием. Напольные котлы – более мощные и предназначены для горячего водоснабжения коттеджей большой площади, порой со вспомогательными сооружениями.

Управлением механизмов котельной занимается автоматическая система, которая следит за поддержанием выбранного температурного режима, меняя параметры работы отопительной системы в зависимости от температуры воздуха за окном (погодозависимый режим управления), выполняет программируемые по таймеру действия (включение-выключение, подогрев и т.д.), сообщает о сбоях в работе системы. Погодозависимая система управления позволяет существенно снизить расход топлива и электроэнергии, не занимая Вашего времени на регулировку оборудования. Твердотопливные котлы, в отличие от газовых, жидкотопливных и электрических, не обладают в полной мере автоматической системой управления, естественной циркуляцией, и регулируются вручную или имеют полуавтоматическое управление и требуют периодической загрузки топлива.

Мы устанавливаем только современные и безопасные системы отопления. Отопление – это сердце Вашего дома, от правильной установки которого зависит комфорт проживания. Еще важное значение имеет отопительное оборудование.

Отопление с естественной циркуляцией теплоносителя

Необходимо правильно рассчитать мощность котла и количество контуров циркуляции теплоносителя. Если, например, рассчитывать по максимуму, то необходимо три контура. Первый отвечает за отопление, второй за горячее водоснабжение (ГВС), третий за нагрев системы теплых полов. При расчете мощности котла, идущей на ГВС, обязательно нужно учитывать количество точек разбора горячей воды, которые могут использоваться одновременно, чтобы при нехватке мощности не получить в обеих точках водоразбора слегка теплую воду. Также необходимой составляющей загородного дома является бойлер, позволяющий накопить и подогреть к определенному времени необходимый запас воды.

Отопительные системы различаются по способу циркуляции теплоносителя. В системе отопления с естественной циркуляцией движение воды в трубах происходит за счет разного удельного веса более легкой горячей воды, идущей от котла и более холодной воды, текущей в обратном направлении. Достоинство – независимость от подачи электричества, недостатки – это необходимость применения стальных, более толстых и тяжелых труб, как правило, больший расход топлива на поддержание разницы температур. В системе с принудительной циркуляцией движение воды осуществляется с помощью насоса. Это обстоятельство позволяет использовать металлопластиковые и ПВХ-трубы меньшего диаметра, осуществлять скрытую прокладку труб. При такой системе циркуляции удобно регулировать температуру в разных помещениях по отдельности, при этом экономится топливо и технический ресурс котла.

При наличии двух замкнутых отопительных контуров – системы отопления и теплого пола рекомендуется использовать принудительную циркуляцию теплоносителя. При этом в качестве энергоносителя можно использовать не воду, а специальные жидкости – антифризы, более удобные в применении. Такой тип позволяет применять металлопластиковые трубы, более легкие и удобные при монтаже, чем традиционные стальные или медные.

При наличии автоматической системы управления для ее предохранения от сбоев лучше дополнительно установить стабилизатор напряжения электросети, а для обеспечения энергонезависимости автоматики котла и работы циркуляционных насосов – специальный аккумуляторный источник бесперебойного питания (ИБП), необходимый при частых отключениях электроэнергии. В остальном комплектация подобной такой системы остается неизменной: отопительные приборы, дымоходы и т.д.

Котлы с естественной циркуляцией

Типы отопительных приборов (ОП), подбираются исходя их вышеперечисленных факторов. Основным типом ОП являются радиаторы или батареи (различных конструкций) обогревающие помещение за счет излучаемого тепла. Менее распространены конвекторы, в которых обогрев происходит в результате циркуляции воздуха через сам отопительный прибор. Естественно, что многие существующие ОП совмещают эти два способа в той, или иной степени.

Подсоединение отопительных приборов может быть последовательным и параллельным. В первом случае радиаторы подключаются друг за другом в один или несколько контуров. Такой способ отопления с естественной циркуляцией теплоносителя наиболее прост и менее затратный, но его недостаток в том, что последние радиаторы в контуре могут быть значительно холоднее первых. При втором способе монтажа к каждому радиатору подводятся две трубы – прямого и обратного тока воды. Такой способ дороже, но позволяет поддерживать требуемую температуру во всех отопительных приборах.

Установка терморегуляторов или термостатов на отопительных приборах позволяет автоматически регулировать заданную температуру в каждом помещении в отдельности, снижая расход тепловой энергии на 15-20%.

В дополнение к отопительным приборам используются системы теплого пола, когда под покрытием пола прокладываются гибкие трубы, по которым циркулирует горячая вода, или нагревательный электрический кабель.

Во-первых, рекомендуется устраивать теплый пол только в отопительных системах с возможностью плавного изменения температуры теплоносителя, то есть с газовыми и твердотопливными котлами, использование электроэнергии дороговато, а твердотопливные котлы сложнее регулировать по мощности.

Во-вторых, не рекомендуется использование электрического теплого пола из-за неоднозначного и порой просто вредного влияния на здоровье электрических полей, неизбежно возникающих при использовании такой системы.

Читайте также:  Котел на дизельном топливе
Ссылка на основную публикацию